you are given 4 coordinates of the points.
Grid size: X*Y (Both scalar parameters)
Plane Size: Px * Py (Both scalar parameters)
Fixed point: don't change the coordinate of the point.
GNx, No of plane on X axis= ceil(X/Px)
GNy, No of plane on Y axis= ceil(Y/Py)
this will generate the new grid of GNx*GNy.
Find the 4 coordinates of the new grid such that the position of the fixed point remains the same.
Hint: Slope of all the sides will remain same after transformation.
=================================================================================
Inputs :
Grid size: Int X, Int Y
Plane size: Int Px, Int Py
Points array :
[0] (x0,y0)
[1] (x1,y1)
[2] (x2,y2)
[3] (x3,y3)
Fixed Point index: Int FixedPoint
=================================================================================
Output Points array :
[0] (Nx0,Ny0)
[1] (Nx1,Ny1)
[2] (Nx2,Ny2)
[3] (Nx3,Ny3)
project euler answer will be: "Nx0,Ny0,Nx1,Ny1,Nx2,Ny2,Nx3,Ny4"
without rounding off up to 2 decimal points.
=================================================================================
Sample Example 1:
Grid Size: X*Y= 10*10
plane size: Px * Py = 2*2
corner to fix: 0
input points:
[0]-20,20
[1]-20,-20
[2]20,20
[3]20,-20
GNx, No of plane on X axis= ceil(X/Px) = ceil (10/2) = 5
GNy, No of plane on Y axis= ceil(Y/Py) = ceil (10/2) = 5
so GNx*GNy = 5*5
output points:
[0]-20,20
[1]-20,-20
[2]20,20
[3]20,-20
so the answer is: -20.00,20.00,-20.00,-20.00,20.00,20.00,20.00,-20.00
In this example planes of 2x2 is perfectly accommodated in grid size of 10x10, so the points will remain the same.
=================================================================================
calculate the values for the following:
Grid Size: X*Y= 9*9
plane size: Px * Py = 6*6
corner to fix:0
input points
[0]-18,20
[1]-18,-20
[2]15,15
[3]15,-15
GNx, No of plane on X axis= ceil(X/Px) = ceil (9/6) = 2
GNy, No of plane on Y axis= ceil(Y/Py) = ceil (9/6) = 2
so GNx*GNy = 2*2
What are the output points for the above?
